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EXECUTIVE SUMMARY

This report provides a theoretical description of the Conditional Ocean Wave Simulation
Model called SIMBAT. The mathematical foundations, probability theory, and numerical
methods employed are explained. This report provides the user with the necessary theoretical
information to utilize SIMBAT in an educated manner. Along with this document, a
supplementary document, TN-1838 SIMBAT User's Manual (Borgman, et al., 1991), which
provides information for use of the software, is available from the Naval Civil Engineering
Laboratory (NCEL). SIMBAT was developed by Dr. L. E. Borgman at the University of
Wyoming for NCEL

The primary objective of the SIMBAT development was to provide an efficient means to
assist in analyzing the dynamic motions of deepwater semisubmersible platforms to be used for
Offshore Tactical Aircrew Combat Training Facilities (Shields, et al., 1987). This development
was funded by the Office of Naval Technology (ONT) under the Navy Exploratory Development
Program.

SIMBAT development focused on the simulation of water wave properties to expedite
subsequent calculation of wave loading. For example, if the Morison equation (Sarpkaya and
Isaacson, 1981) is used to compute the wave loads on a slender member, the water particle
velocities and accelerations will be required as input for each time step and at each load point
across the structure. SIMBAT produces this data by use of fast frequency domain methods and
by approximation with Legendre orthogonal polynomials (Hochstrasser, 1964).

SIMBAT provides the option to create either conditionally or unconditionally simulated
water particle kinematics. A conditional simulation utilizes a measured ocean wave spectrum or
measured time series history to "condition" the simulation to create associated water particle
kinematics that adhere to the properties of the input data but also follow the laws of normal
probability theory. This is particularly useful if the user wants to impose a large measured wave
profile on the structure and create the associated kinematics for that profile to determine the
extreme loads on the structure. The advantage of this option is that a large wave profile is
certain to occur in the computer simulation where ordinarily a much longer time domain
simulation would be required before an extreme wave profile would be realizable. Thus, the
design engineer may utilize SIMBAT to produce the appropriate water particle kinematics for
extreme wave loading in a reasonable amount of computer time.

The unconditional simulation will produce wave properties in accordance with an input
ocean wave spectrum and that follow a multivariate normal probability law. The wave properties
are "unconditionally" simulated randomly by an input seed number specified by the user.

Current procedures available for simulating ocean wave properties are based on time
domain superposition and filtering of Gaussian white noise. Substantial savings in computer
simulation time and expenses can be realized if the wave properties are simulated in the
frequency domain as is done in SIMBAT.

One of the major features of the simulation model is its ability to produce wave properties
over a large three-dimensional spatial region using a Legendre polynomial fit. The wave load
points on the offshore structure are calculated at each time step in an expedient manner as
opposed to the standard industry method of computing the wave properties in the time domain

v



at each load point. Orders of magnitude of computer time may be saved as a result of this
method. If SIMBAT is used for this application, the design engineer would merge the SIMBAT
post processor, CKPOLY, with a structural analysis package to read the water particle kinematics
from the SIMBAT output files.

SIMBAT can be used for the following applications:

(a) Determination of ocean wave properties for computing wave loading on offshore
structures that will be used in connection with dynamic response simulation
models.

(b) Wave force studies in random waves.

(c) Creation of random directional seas for design applications.

In addition to these three applications, SIMBAT may also be used for the conditional
simulation of waves in a model test basin (e.g., the creation of a large wave train or wave groups
in a basin that would adhere to the input wave autospectra and retain the statistical properties of
the multivariate normal probability law). This would allow the experimentalist to perform tests
in a shorter period of time.
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OBJECTIVE

This report provides a theoretical description of tPhe Conditional Ocean Wave Simulation
Computer Model (SIMBAT). This report supplements the SIMBAT User's Manual (Borgman
et al., 1991), which provides the instructions for use of the SIMBAT software.

INTRODUCTION

Highly regular, single direction, single frequency wave trains are quite rare in the ocean.
The predominant wave systems present are irregular, with at least some degree of short
crestedness (Figure 1). The wave conditions in an intense storm are particularly chaotic and
turbulent, yet these are the conditions most significant to the engineer designing a structure for
emplacement in the ocean.

Several options are available to the designer. Nonlinear, unidirectional waves of
permanent form, such as those produced by Stokes' theory or various numerical solutions, can
be used for each large "bump" of sea surface. This produces a conservative or maximal estimate
of the water particle velocities and accelerations, because each component of the wave form
reinforces the others to push and pull together. Alternatively, a linear superposition of many
independent components, each with its own direction, phase, and amplitude, can be used to
obtain the wave kinematics.

Both of these options are imperfect models of the real ocean. The fault of the nonlinear,
unidirectional theory is that it imposes an artificial regularity on its estimates of the wave
kinematics. The theory based on linear superposition allows the irregularity, but in turn produces
a linear solution to wave conditions that are known to have skewed nonlinear characteristics of
sharper crests and flatter troughs. The design engineer must judge which approach has the least
imperfection for the application intended. There are situations where each is the most
appropriate compromise. A discussion of these options and a comparison with field data are
given by Forristall, Ward, Borgman, and Cardone (1978).

More to the point, the theory used for the wave kinematics must be evaluated in tandem
with the wave force formula and the values of the force coefficients selected. An overestimation
within the wave kinematics algorithm can be somewhat compensated for with lower force
coefficients, and vice versa.

The Morison equation is generally accepted as a satisfactory approximation for wave
force, although other alternatives and variations have been investigated from time to time. One
common modification is to vary the drag coefficient with time according to some locally
evaluated Reynolds number.

The particular combination of wave theory and force formula selected for use really needs
to be calibrated against measured wave data under real oceanic conditions. Most oil companies
have gone through this exercise at least once for the schemes they have found useful in design.
The larger companies proceed with such evaluations almost continually to match new oceanic
conditions as they arise in the company's operations. There is, of course, some diversity in
computational procedures from company to company, because each may choose to adjust the



overall kinematics and force calculations in different places to calibrate the produced estimates
to agree with measured data.

Various reviews of nonlinear wave theory (Dean, 1970; Sarpkaya and Isaacson, 1981),
random wave theory (Borgman, 1972; Ochi, 1982) and force formulas (Dean and Borgman,
1986; Sarpkaya and Isaacson, 1981) have been published. Dean and Borgman (1986, p. 341)
also give a good summary of field measurement programs. It does not appear useful to provide
yet another summary of these topics. Instead, various new results largely related to the
estimation of kinematics in irregular wave fields as input to force computations will be presented.
Computer simulation of wave kinematics and the special topic of conditional simulation will be
particularly emphasized. The inclusion of the word "forces" in the chapter title is intended to
indicate that the formulas for kinematics are directed toward providing a basis for wave force
computations. New public domain computer software is just now becoming available that
enhances the usefulness of these techniques in engineering design. Sources for such software will
be briefly reviewed.

Figure 1

Aerial photograph of an irregular sea surface (ship in photo
shows scale) (from Pierson, Neumann, and James, 1990).
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BACKGROUND

The Naval Civil Engineering Laboratory (NCEL), under the Offshore Aircrew Combat
Training System task of the Navy Exploratory Development Program, was tasked to develop
technology necessary to design and construct reliable and cost effective unmanned ocean
platforms for deepwater (600 to 10,000 feet) Tactial Aircrew Combat Training System (TACTS)
applications (Shields, et al., 1987). One of the objectives of this development program was to
develop, modify, integrate, and validate computer models for simulation of deepwater moored
platform motions. Investigations of various candidate platforms resulted in the semisubmersible
concept being selected as the most suitable platform type (Shields, et al., 1983).

The SEASTAR (PMB Engineering, 1990) nonlinear structural finite element analysis
program was selected to model the hydrodynamic loads and dynamic response of the
semisubmersible/mooring system. SIMBAT was developed to meet the following requirements:

1. Wave force studies in random seas.

2. Wave property input in dynamic response simulation model, SEASTAR.

3. Random directional seas representation for design applications.

In order to gain an insight into the dynamic response of deepwater TACTS
semisubmersible platforms, the dynamic response simulation model SEASTAR was used. The
preferred environmental data base for SEASTAR, when used in design analyses, consists of a
number of actual ocean wave time series corresponding to major storms (i.e., 50, 75, 100 year
storm) or other environmental scenarios of interest (i.e., those for fatigue analyses or operational
sea states) at the sites of interest. Since these data are unavailable in most design projects,
simulated ocean wave property data should be used.

Current procedures available for simulating ocean wave properties are based on time
domain superposition and filtering of Gaussian white noise. Substantial savings in simulation
time and expenses can be realized if the discrete Fourier transform of the desired time histories
of the wave properties are simulated directly in the frequency domain. The frequency domain
simulation methods are ten to a hundred times faster than the time domain simulation techniques.
In addition, the computationally very rapid Fast Fourier Transform (FFT) can be used to revert
the simulation to the time domain.

All simulation schemes are based on the introduction "f random numbers. The
engineer/oceanographer/mathematician builds in the wave properties (design wave/wave
grouping) to be preserved. If one has an actual sequence of ocean wave data and wishes to study
the motion response associated with that particular sequence, currently available simulation
procedures will not accommodate thcse data. Conditional simulations are necessary, with the
randomness being restricted so as to produce ocean wave simulation data, conditional on the
wave having the required values. These required values may, for example, be a series of wave
heights expected in a typical storm or other environmental scenarios at the site.

Conditional simulation of ocean wave properties is a very recent research topic with wide
application to Navy projects. Techniques of conditional simulation have been used in geological
problems and are now applied to ocean wave applications as used in SIMBAT.

During the development of SIMBAT, the use of Legendre orthogonal polynomials
(Hochstrasser, 1964) was added to SIMBAT to create three-dimensional wave properties over
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a large spatial region. The use of these polynomials along with the frequency domain method
of creating the wave properties was determined to provide a computationally much faster
algorithm than computing the wave properties at all grid points over all time. This application
utilizing Legendre polynomials is now considered one of the major beneficial aspects of
SIMBAT, especially for compliant systems.

OVERVIEW OF SIMBAT MODEL AND SOFTWARE

SIMBAT is a computer model that calculates ocean wave properties, such as water
particle kinematics for use in various ocean engineering applications. The model assumes the
wave properties form a Gaussian stochastic process. This means that all wave properties at any
selected set of times and locations follow a multivariate normal probability law.

The SIMBAT software can create the Ochi-Hubble, Pierson-Moskowitz, Bretschneider,
JONSWAP, and Wallops Spectral Models or read in the user's own spectra, if desired. The
waves may be directionally spread by either wrapped normal, cosine-squared, or von Mises
methods. There are options to stretch wave properties above mean water level using
Rodenbusch-Forristall delta stretch, Reid-Wheeler stretch, truncation extrapolation, functional
extrapolation, linear extrapolation, and gamma extrapolation.

SIMBAT has the option to perform a single simul ition of wave properties at one or more
locationc in space using frequency domain methods directly or using the application of Legendre
orthogonal polynomials. If the polynomials are used, a separate program, CKPOLY, is used to
create the wave properties from SIMBAT output. CKPOLY is provided with SIMBAT but is
separate to allow the user to embed the program in their structuial analysis software.

For conditional simulation, the user can provide SIMBAT with a measured large wave
profile, wave groups, or any other wave properties that are presentative of the environmental
area of interest. SIMBAT will constrain the simulated wave properties to follow the measured
data while also maintaining the statistical laws appropriate for ocean waves.

The latest version of SIMBAT, Release 3.0, now contains accuracy verification
algorithms to compare kinematics from the different simulation methods in SIMBAT.

SIMBAT has the option to write ASCII output data files as it proceeds through the
simulation so that the user may verify the integrity of the data. Therefore, if SIMBAT is
executed in a multitasking, multiwindow environment, the user can confirm the simulation is
working properly on his/her computer throughout each level of the simulation.

This study was motivated by the need for computer-efficient calculation procedures and
computer codes for the preparation of accurate ocean wave kinematics and properties for
multiple-frequency, multiple-direction seas. The immediate application was the design of
moored, floating instrument towers for Navy gunnery ranges. However, the extensive theory
and efficient computational algorithms should prove useful in many other ocean engineering
applications.

4



THEORETICAL FORMULATIONS OF THE SIMBAT MODEL

Coordinate System Specifications

The ocean wave kinematics will be referenced to a general horizontal coordinate system.
All horizontal coordinate axes are established within navigation headings measured clockwise
from true north:

01 = direction of positive x axis

0Y = direction of positive y axis (1)

Let the vertical axis z be zero at mean water level and positive downward.
The direction of travel of a wave is 0 in navigation heading. The wave is travelingtoward direction 0 if P = 1 and is coming from direction 0 if -- -1.

Basic Wave Properties

Eight wave oroperties ai,. of interest. In terms of ,eal functions, these are:

1. The water level elevation,

lq(x,y,t) = a cos I 0 k[x cos(0-Oe)+y cos(O-O,)] - 2wft - 01} (2)

2. The components of water particle velocity,

ffi a(2 nf) cosh[k(d z)] 30 Cos(0-0y)

[V (x,y,z~t)1  sinh (k d) DIDCO co(6 -0By)]

•cos[030 k {x cos(0-0.) ,y cos(O-0-,)} -2 nft -4] (3)

Sa(2 7cf) sinh [k (d -z)]

sinh (k d)

• sin[P 0 kIx cos(0-0.) + y cos(0-0)} - 271ft -01 (4)

5



3. The components of water particle acceleration,

a,(X I -a(2i~f) cosh [k(d -z)] P. cos(e- e.)
a,(xyzt)] sinh(kd) Po cos(Oee-)e

•sin[PokIx cos(e -o.) + y cos -(e -0) -2 ftx -f ] (5)

a, (x, y, z, t) = - a(2 I f) 2 sinh [k(d - z)J
sinh (k d)

Ccos[PokIx cos(0-0.) + y cos(O-O )- 2nfft - 4] (6)

4. The water pressure anomaly (plus and minus about hydrostatic pressure) divided by pg,

p (x,uz,t) cosh [k (d - z)]-a
pg cosh(kd)

• cos[Pokjx cos(6-8e) + y cos(O-6)l - 22ft -f 1 (7)

In these formulas:
a = wave amplitude
f = wave frequency

d = water depth
k = wave number = 27r/wave length
0 = wave phase
p = water density
g = acceleration due to gravity

and it is assumed that wave number and wave frequency are related by the formula:

(2 n f)2 = g k tanh (k d) (8)

Wave Properties in Complex Form

Through the use of the complex form and cos a and sin a, where

Cosa exp (i a) + exp (-a) (9)
2
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sin a- exp(ia) - exp(-ia) (10)
2i

All of the wave properties listed above can be expressed in the form:

a •4
b(x,y,z,t) - - G(z)T(f) H(e)exp[- i POk{x cos(0 - e.)

2 (11)

+ y cos(o - Oy)}] exp(i2 x ft)

for positive f. The original real-valued wave time property equals b(O) + b(t)*, where

b* (f) = complex conjugate of b(f) (12)

The functions G, T, and H for each wave property are:

1. Water level elevation,

G(z) = T(f) = H(O) a 1.0 (13)

2. Velocity,

"cosh[k(d-z)] = fe-k +e-k(2d-z)}
sinh (kd) {1 -le-2kdi , f (14)G(z) =(14)

sinh [k(d - z)] le-kz e-k( 2 d-z)i

sinh (kd) {l -e- 2 kdi ,

T~ 2wf, for V. and Vy (5
T(f) = {~;' oVad~(15)

2nfi , for Vz

P~os(OS - 0.), for V.

H(6) P. cos( -O), for Vy (16)

1.0, for VZ

7



3. Acceleration,

cosh [k(d-z)] e-kz + e-k(24z-z)l
sinh (k d) (I -e- 2kdi fo .ada

G(z) - (17)

sinh [k(d - z)] le - e-kadz))
sinh (k d) -e-2kd] for' a

(2lrf)2i for a. and ay (18)
_-(2 7tf)2 for a .

[o cos (e -0d) , for a,

H(O) Do3 cos (e - 0) , for a. (19)

1.0, for az

4. Pressure anomaly,

G(z) - cosh[k(d-z)] e-kz +e-kd-z) (20)
cosh (k d) (I +e-2kd(

T(f) 1.0 (21)

H(e) 1.0 (22)

In the above definitions, the hyperbolic function terms involving the vertical coordinate
z and water depth d have been expressed in algebraically equivalent forms, which makes it easy
to extend the formulas to very large water depths. These forms also have advantages later in the
sections on the treatment of compliant structures.

Irregular Waves by Superposition

An irregular wave train can be obtained by the summation of many different simple wave
forms. For example, the general formulas in Equation I I can be summed to obtain, with some
obvious extensions of notation,

8



b(t;xy,z) E E a.je'*-JG(f.,z)T(fQ)H(Oj)
m--M j-1 (23)

* exp[-iP30 k.fx cos(0, -O) + y cos (Oi-Oy)}]exp(i2n f.,t)

The summation extends over an arbitrarily selected list of frequencies {fm; m = 1,2,3,...,M},

and a corresponding list of directions {Oj; j = 1,2,3,... ,J}. By convention,

fo = o, f_. = - fm (24)

and the terms in the summation for negative frequencies are taken to be the complex conjugates
of those for the corresponding positive frequencies. This forces the wave property time series
to be real-valued.

Irregular Waves in Frequency Domain

Let

J

B(fm;x,y,z) = ajet'*JG(fm,z)T(fm)H(Oj)j-1 (25)

* exp[-i P 0 . x cos(Oj-0,) + y cos(-0 7)J

Equation 23 may be expressed as a discrete Fourier transform,

M

b(t;x,y,z) = E B(f,;x,y,z)exp(i2ixfmt) (26)
0n--hi

This form is particularly convenient since it permits, with some slight modifications, the high-
speed computation of wave property time series with the Fast Fourier Transform (FFT)
algorithm.

Fast Fourier Transform (FF1') Algorithm

The FFT algorithm provides a very efficient and rapid procedure for calculating the two
formulas (Blahut, 1985):

9



I N-i
-W wMexp(-i21mn/N) (27)
N .-0

N-I

W. = , W.exp(i2nmn/N) (28)
M3,0

for m = 0,1,2,...,N-1 and n = 0,1,2,...,N-I. These are exact discrete transformations for
computing one of the two sequences, {Wm; m = 0,1,2,...,N-I} and {wn; n - 0,1,2,...,N-I},
from the other.

Some properties of the FFT formulas deserve mention. Because

exp(-±i2 xmn/N) - cos(2nmn/N)t:isin(2xmn/N) (29)

both summations are formally periodic, with period N. This means that both sequences {Wm}
and {WnJ are forced by their mathematics to have this periodicity. Also, both sequences are
complex-valued, in general. However, in the applications here, the wn are real-valued and the
Wm are complex-valued. A necessary and sufficient condition for the wn to be real-valued is
that:

W. = W;_m (30)

for 0 < m < N/2.

Wave Properties in the FFT Format

The conversion c " Equation 23 to the FFT format is achieved by discretizing time and
frequency,

t = nAt, n =0,1,2,...,N-1
(31)

fm. mmAf, m 0,1,2,...,N/2

where the time and frequency increments are taken to satisfy

(At)(Af) = IIN (32)

With this constraint, the argument in the complex exponential in Equation 25 simplifies to:

2nxf3 t - 2nmn/N (33)

In addition, the periodicity implicit in the FFT formulas leads naturally to the translation of the

10



negative frequency values in Equation 26 to the positive frequencies:

B((N-m}Af;x,yz) - B(-mAf;x,y,z) (34)

The complex-valued, skew conjugate symmetry imposed on Equation 23 then becomes the FFT
symmetry in Equation 30 that forces the transform to be real-valued.

With these modifications, the general wave property formulas in Equation 26 become:

N-i

b(n At;x,y,z) = E B(m Af;xy,z)exp(i2x amn/N) (35)
m-0

The values of N and af should be selected so that all the energetic frequencies of importance are
enclosed within the bounds:

0 < mBAf < f < mLAf << 1/(2At) (36)

The i•terval (mB,mL) ordinarily extends over, perhaps, 150 Af increments out of N = 2048
terms in the sequence. The other FFT coefficients can be set to zero, except for those
determined by complex conjugation in symmetry about m = N/2.

In summary, a frequency domain computation of the wave property time series consists
of the following steps:

1. B(mAf; x, y, z) is computed from Equation 25 for mB < m < mL.

2. By conjugate symmetry, for mB < m : mL,

B(IN-m}Af;x,y,z) - B*(mAf;x,y,z) (37)

3. The rest of the coefficients are set to zero.

4. The sequence of B(mAf; x, y, z) values are transformed with the Fast Fourier Transform
algorithm by:

N-1

b(nAt;x,y,z) = • B(mAf;x,y,z)exp(i2nmn/N) (38)
M-0

This total process yields the full time series for n = 0,1,2,...,N-I.
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THE COMPLEX-VALUED AMPUTUDE MATRIX

The irregular train and all its associated linear properties, such as its kinematics, are
specified completely, for the FFT approach, by:

A -j - a.,e''i- (39)

for mB < m: M mL andj = 1,2,...,J. The amplitudes Am can be arranged into a complex matrix
with rows specifying direction and columns designating frequencies. The other functions in
Equation 23 are transfer functions that convert the amplitudes into the various wave properties.

Any procedure, either deterministic or random, that generates the complex amplitude
matrix fully determines all the wave property time series. Much of the following discussion will
be concerned with various choices and their consequences related to the probabilistic selection
of values for the complex amplitudes.

Characterization of Irregular Waves

The directional spectral density S(fO) is the function most commonly used to characterize
the mean-square oscillation of the wave components at different frequencies and directions.
More specifically, define the two-sided spectrum as:

2S(f.,Oi),&f,0 = aj/2

= mean-square oscillation of a cosine

wave with amplitude a., (40)

The mean-square oscillation of the sea surface in the irregular wave train, if all components

behave independently, becomes:

2 f 2 S(f,O)dOdf (41)

m-i J-I 2 00

In the case where the sea surface is taken as a random process, this becomes:

-. 2z

var(,!) - 2 ff S(f,0)dedf (42)
0 0

A function of angle 6 at each frequency, called the spreading function, is defined as:
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D(O,f) = S(f,O)/S(f) (43)

where

2%

S () = f s(f,o) dO (44)
0

The relation in Equation 43 can also be written as:

S(f,O) = S(f)D(O;f) (45)

Many formulas have been proposed and studied as models for S(f) and the spreading
function (Borgman, 1979; Ochi, 1982). The most effort has been spent seeking the best
characterization for fully arisen seas, in order to improve wave forecasts and hindcasts. The
emphasis for structural design is somewhat different, where it is desirable to be able to model
a wide variety of sea conditions, from very narrow-banded to very broad-banded, and from
unidirectional conditions out to broadly spread seas. Of particular importance are seas that are
multimodal in direction and/or frequency.

All of the spreading functions commonly used (the cosine-squared, the von Mises, and
the wrapped normal formulas) have almost exactly the same shape. That is, parameters can be
selected that make the formulas very nearly lie on top of each other. All of these are unimodal
and symmetric about the principal direction.

There are several very good discussions of these various choices of formulas (Sarpkaya
and lsaacson, 1981, pp. 504-520; Ochi, 1982, pp. 308-346; and Muga, 1984, pp. 163-175).
Rather than repeating still another summary here, an often overlooked specific choice that has
many advantages in engineering studies will be introduced. This choice consists of the Ochi-
Hubble spectrum, as combined with the wrapped normal spreading function. Superpositions of
such spectral models can be used to obtain multimodal conditions.

Ocean Spectral Models

Ochi-Hubble Spectra Formula. The formulation developed by Ochi and Hubble (1976)
was expressed as a one-sided spectrum with radian frequency. For consistency with the present
treatment, this is changed to a two-sided, cycles-per-second formula,

2 [(4 X + 1) f/4]" o2 exp[-(4 1 + 1)(f 0/f) 4/4] (46)
r (X) If 1

4A+(

where r(x) is the complete gamma function. It is straightforward to show by calculus that S(f)
integrates over (-c, oo) to obtain a2. The change of variable,
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y - (4 + 1) (f0/f) 414 (47)

is made within the integral to reduce the expression to:

ft W

variance = 2 fS(f)df = l[P(7)]-fC e-Yy1-1dy (48)

o 0

If S(f) is differentiated with respect to f and set equal to zero, to determine the value at which
S(f) is a maximum, the result is f = fo. The maximum value for the spectrum, So, is then:

SO 2[(4; + 1)/4] o2 exp[-(4A + 1)/4] (49)

r r(7)fo

From this,

P . Sofo 2[(4A + 1)/4]'exp[-(4 A + 1)/4] = G(A) (50)
a 2 r(l)

where G(1) is the function of ;L and P the parameter so defined.
The effective width 6 of a spectral density will be defined as the width of a square pulse

with the same height, So, and area, a 2/2, as the spectral density from (0, co). That is,

82 (51)
0 2

a (52)
2 SO

Another expression for the parameter P is:

P = G(l) (53)
28

This conveniently relates I to the effective width and peak frequency of the spectrum formulas.
If I = 1, the Ochi-Hubble spectrum reduces to the usual Pierson-Moskowitz-

Bretschneider formulas. If A > 1, say 100 or so, the spectrum is very narrow-banded. If I <
1, the spectrum is broader than the usual spectral models. Table 1 shows P versus 1. It is easy
to generate more elaborate tables from Equation 50 using a computer, or to solve by Newton-
Raphson iteration (Press, et al., 1986, pp. 254-259) for the value of X required to achieve a give
P value.
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Table 1
Lambda Versus Spectral Parameters in the Ochi-Hubble Formula

Lam_ _ __/ Multiplier

Multiplier 0.01 0.1 1.0 10.0 100.0

1.0 0.0153 0.133 0.716 2.49 7.97
1.1 0.0168 0.145 0.758 2.62 8.36
1.2 0.0183 0.156 0.798 2.74 8.73
1.3 0.0198 0.167 0.836 2.85 9.09
1.4 0.0213 0.177 0.873 2.96 9.43
1.5 0.0228 0.188 0.908 3.07 9.77
1.6 0.0242 0.198 0.942 3.17 10.09
1.7 0.0257 0.208 0.975 3.27 10.40
1.8 0.0272 0.218 0.006 3.336 10.70
1.9 0.0286 0.227 1.037 3.46 10.99
2.0 0.0301 0.237 1.067 3.55 11.28
2.1 0.0315 0.246 1.096 3.64 11.56
2.2 0.0330 0.255 1.125 3.72 11.83
2.3 0.0344 0.264 1.153 3.81 12.09
2.4 0.0359 0.273 1.180 3.89 12.35
2.5 0.0373 0.281 1.206 3.97 12.61
2.6 0.0387 0.290 1.232 4.05 12.86
2.7 0.0401 0.298 1.258 4.13 13.10
2.8 0.0416 0.306 1.283 4.20 13.35
2.9 0.0430 0.314 1.307 4.28 13.58
3.0 0.0444 0.322 1.331 4.35 13.81
3.2 0.0472 0.338 1.378 4.50 14.27
3.4 0.0500 0.353 1.423 4.64 14.71
3.6 0.0527 0.368 1.467 4.77 15.13
3.8 0.0555 0.382 1.510 4.90 15.55
4.0 0.0582 0.396 1.551 5.03 15.96
4.2 0.0609 0.410 1.592 5.16 16.35
4.4 0.0636 0.423 1.631 5.28 16.73
4.6 0.0663 0.436 1.670 5.40 17.10
4.8 0.0690 0.449 1.707 5.51 17.48
5.0 0.0717 0.462 1.744 5.63 17.83
5.5 0.0782 0.492 1.833 5.91 18.70
6.0 0.0847 0.521 1.918 6.17 19.54
6.5 0.0911 0.548 1.999 6.42 20.34
7.0 0.0974 0.575 2.077 6.66 21.11
7.5 0.1036 0.600 2.152 6.90 21.86
8.0 0.1097 0.625 2.225 7.13 22.57
8.5 0.1157 0.649 2.295 7.35 23.27
9.0 0.1217 0.672 2.364 7.56 23.95
9.5 0.1276 0.694 2.430 7.77 24.60
9.9 0.1322 0.712 2.482 7.93 25.09

*Tabled value = peak frequency*spectral peak/variance = peak frequency/(2*effective width).
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Figure 2
Decomposition of a bimodal spectral density.

As suggested by Ochi and Hubble (1976) the formula is particularly useful for the
approximation of multimodal spectra. The formula also appears to have a much wider range of
applicability than was investigated by the authors. Consider an example, shown in Figure 2,
where the variance of the total spectrum is taken to be a2 = 5m2. Suppose 2/3 of the variance
is ascribed to the main mode. Then,

fo = 0.1 Hz, Sol = 33.0, a 2 10
3

(54)

f2 =0.2 Hz, S02 =80 02 5

and
P1 = 0.990, P2 = 0.960 (55)

For these values, the I parameters are:

11 = 1.748, 12 = 1.655 (56)

The total spectrum is then modeled with a combination of these two modes.
In practice, modes are added to the model, the residuals examined, and further modes

introduced until an adequate approximation is obtained. If an f.5 spectral slope is desired for
high frequencies, a mode with . = 1 can be added to the right-hand tail of the spectrum, while
all the other modes at lower frequencies are kept much narrower.
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Pierson-Moskowitz Spectrum (Pierson and Moskowitz, 1964). The Pierson-Moskowitz
spectrum is used extensively by ocean engineers as one of the most representative for waters all
over the world (Sarpkaya and Isaacson, 1981; Chakrabarti, 1987):

a g 2  (L5(i
S(f) = (2 4 f I.)(2 -)'f 5

where: a = 8.1 x 10-3 = Phillips' constant
fo = peak frequency (Hz)
g = gravity (ft/s 2)

Bretschneider Spectrum (Bretschneider, 1959). The Bretscheider spectrum is designed
to ensure the area mo under the spectrum corresponds to HJ16, which assumes a Rayleigh
distribution of wave heights (Sarpkaya and Isaacson, 1981). The Bretscheider spectrum is based
on the assumption that the spectrum is narrow-banded and the individual wave height and wave
period follow the Rayleigh distribution (Chakrabarti, 1987):

SOf) =- (16fo('/)f/)'1(8

where: f. = peak frequency
Hs = significant height

The relationship, T. = 0.946 To, where Ts = significant wave period, makes the
Bretschneider and Pierson-Moskowitz (P-M) models equivalent (Chakrabarti, 1987).

JONSWAP Spectrum (Hasselman, et al., 1973). JONSWAP is a modification of the
P-M spectrum to account for the effect of fetch restrictions and to provide for a much more
sharply peaked spectrum (Sarpkaya and Isaacson, 1981; Barltrop and Adams, 1991):

S (f) a g2  e(-5/4)(f/t.)-d4 jt" (59)
(2 E)d f5
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where:

a = e€--f'M 2 e.

S= 0.07 for f ! f.
Ol =

ob 0.09 for f > fo (60)

a = 603.9 (1.0 - 0.298 In y)

y = 3.3

Wallops Spectrum (Huang, et al., 1981).

S(f) = 0 e((m/4)(fjf)I (61)

where:

m = log(/2x e)22

log 2

e = )12/;o

S=(2temt4)-) 7c 1 }
4(1/4)(m-S) I{ (1/4) (m - 1)]}

(62)

Xo = wavelength at Spemctrum peak

a = H/2

r" = gamma function
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Spectral Spreading Functions

Wrapped Normal Spreading Function. A convenient, easily interpreted, and
mathematically tractable spreading formula is provided by the wrapped normal directional density
(Mardia, 1972),

1 " es 2 €2 12

D(O;f) - ± + C2 cos[n(O-e 0 )]

, exp|-(O-O 0 -2nq) 2/2c 2 1 (63)

q.-,V 2 n• c

where c is the circular standard deviation in radians. The first formula is best if c > 7, while
the second is better if c < 7r.

For the usual case, where c < < 702, the half-peak width of the spreading function is:

0 HP = c ji log2 (64)

Von Mises Function (Mardia, 1972). Other common models from directional statistics
are the von Mises formula (here 10 = modified Bessel function of order zero):

D(0;f) = exp[acos(O -O0)J (65)
27 nIo(a)

with half-peak width of

0HP =2 cos-I(I 1og2) (66)

Generalized Cosine-Squared Function.

D(O;f) K KCoS2U(O) (67)

with half-peak width

0HP 4 cos-' [(0.5)"lt2 1  (68)
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A reasonable set of equivalent values for c, a, and a are obtained by equating the half-peak
widths,

c 2cos-'(l _ 2-) lg 4cos- [(0.5)1I2& (69)

and then solving for one in terms of the other

Water Particle Kinematic Stretching

Wave properties above mean water level are not really defined within linear wave theory.
Yet, this region is of profound importance to the design of engineering structures. Various
approximate schemes to remedy this difficultly, at least approximately, have been suggested
(Rodenbusch and Forristall, 1986).

Functional Extrapolation. The most simple procedure would be to use the formulas
directly from linear wave theory, with z given values above mean water level. If z is measured
positively downward from mean water lever, this would involve inserting negative z values into
the formulas for the kinematics. The derivation for linear wave theory, however, assumes that
0 < z < d. As a consequence, this approach leads to predictions of velocities at the crest that
are much too large.

Truncation. Another simple procedure is to use, for the wave kinematics above mean
water level, the value of those same kinematics at z = 0. However, that doesn't seem to lead
to reasonable values either.

Linear Extrapolation. Linear extrapolation is based on using the rate of change of the
wave property with respect to z, at z = 0 and linearly extrapolating for values above mean water
level.

Let

p0 = wave property value at z = 0(70)

p = dp (z)Idz at z = 0

Then the linear extrapolation formula is:

p(z) = P0 + Poz/ (71)

20



Reid-Wheeler Stretching. Another scheme that has had some use in published
engineering studies (Wheeler, 1969) consists of proportionally stretching the wave property at
z = 0 up to z = -ij, whererl is the water level elevation above mean water level (i.e., positive
upward). Then, the linear wave theory is computed with the vertical coordinate equal to zs,
where:

(d - z.)/d (d - z)/(d + ) (72)

Because -n < z < d, it follows that

z5/d = 1 -(d-z)/(d+ TI) (73)

is always between 0 and 1.

Delta Stretching. Studies by Rodenbusch and Forristall (1986) suggest the following
empirical procedure, which seems to produce fair agreement with field test measurements. Let
0 < A < 1.0 and 0 < dA < d be calibration numbers and define zA so that,

(dA - zA)/(T A + d,) = (dA - z)/(dA + TI) (74)

If A = 0 and dA = d, then the Reid-Wheeler stretching listed above is produced. If A = 1 and
d = d, then zA = z and the use of zA would correspond to functional extrapolation.
Rodenbusch and Forristall suggest the following empirical rules:

1. If da ; z < d, use z directly in the linear wave theory.

2. If z < dA, compute zA: (a) if 0 < z,, < d,, use ZA to compute the wave kinematics:
(b) if zA < 0, compute the wave property by the linear extrapolation as:

p(z) p0 + Z (75)

After studying various field data, Rodenbusch and Forristall found fairly satisfactory values for
A and d, to be:

A = 0.3, dA = 2 o, (76)

where a,, is the standard deviation of the sea surface.
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Gamma Extrapolation. Another formula, suggested here as purely conjectural, may be
based on the gamma function. Suppose the kinematic property above mean water level is
modeled by:

p,(z) = c e -4 -0/P (z+ (77)

for -t7 < z < 0. Let p0 and p' be as defined for linear extrapolation. If the gamma curve is/ I

matched to have ps(z) = p and p. = Po, and if the mode of the gamma is forced to occur at z
= yi7, where 0 < y < 1 , it is easy to define a, p, and p(z):

(y - 1) p013 - P0 (78)
P0

p(z) = P) exp(-z/I) (79)

a = 1+ 'lY (80)

This curve has several appealing features in that it can be forced to attain the maximum just
below the water surface, but is zero at the air-water interface (where it presumably would drop
abruptly to zero). Also, it matches the kinematics at z = 0 and has the matching slope there.
However, it has not been matched against real data, so it is suggested here as only an interesting
possibility.

Comparisons with Data. Comparisons of the delta stretch procedure for three different
data sets, one from a wave tank study and two from field measurements, are reported by
Rodenbusch and Forristall (1986). They showed fairly good empirical correspondence, although
there were discrepancies. Stretching is, at best, an empirical ad hoc procedure and should not
be expected to yield perfect prediction.

RANDOM SIMULATION OF IRREGULAR WAVES

The most common assumption used for random simulations of irregular waves is that the
wave properties form a Gaussian stochastic process. This means that all the wave properties at
any selected set of times and locations follow a multivariate normal probability law. It is also
usually assumed that separate components are independent of each other and that the real and
imaginary parts of the complex amplitudes are independent of each other. As shown in the
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Appendix, the real and imaginary parts of the amplitude, AM*, are independent and normally
distributed if, and only if, the m are uniform on (0, 2r), the aj are Rayleigh distributed, and
Omj and amj are independent of each other.

The Rayleigh random variable here has a distribution function:

F(a.) I - exp,(- a~ /2c ?~1 ) (81)

where

a2 _ S(f.)D(0j;f.)AfA0/2 (82)

A convenient way to generate a random number with a specified probability is to produce
a uniform random number on the interval (0,1) and then to equate this to the distribution function
for the desired special random number (Zelen and Severo, 1964, p. 950). Let UI be a uniform
random number. Then,

F(a,,j) = U (83)

gives

amj -- aj -2log(1-U,) (84)

These can be combined to obtain a random simulation of:

Avj = a,,j e-'*. (85)

An alternative and equally good approach is to directly produce two independent standard normal
random numbers, Z1 and Z2 . Then,

Amj = Omj(Zi +iZ 2) (86)

Either method can be used to build up a simulation of the complex amplitude matrix, from which
all the linear wave properties can be produced through the application of the appropriate transfer
functions.

It is often convenient to skip the Rayleigh part of the simulation, set amj = a m and use
only the random phase part. If the directional spreading is not too narrow, so that atleast four
or five energetic directional bands are added at each frequency, a central limit theorem behavior
makes the resulting wave properties behave as multivariate normal random variables with the
correct spectra and cross spectra; this is called the random phases model (Borgman, 1982b, p.
412). However, if the Rayleigh part is retained, all components will exactly introduce Gaussian
behavior. An example of wave profile simulation is given in Figure 3.
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Figure 3
An unconditional simulation of a wave profile (variance = 50, 1. = 1.0, fo = 0. 1,

principal direction = 600 (from), spreading standard deviation = 200).

The user of multidirectional random phase wave simulations or the Rayleigh amplitude
wave simulations should carefully distinguish between the input spectral density (i.e., the
theoretical spectral density of the population) and the sample spectral density that can be
computed from the simulations. The sample spectral density will contain ordinary sampling
variations from the input spectra, and, thus, may depart rather substantially from the input
function, both in overall variance and even in functional shape. If the sample spectra are
computed by FFT procedures, the deviations between the sample and input spectral densities will
be related to a chi-squared probability density.

Occasionally, users choose to simulate with the random phases model for unidirectional
wave trains because this has the advantage that every simulation has its sample spectral density
exactly equal to the input spectral density. Comparisons of platform response to wave forces for
such simulations then show the variations possible between seas that exactly have the specified
spectral density. These simulations are examples of what may be called constrained simulations.
That is, the simulation is forced to have exactly some particular behavior (specified spectrum in
the unidirectional random phases simulation cse) that it would not have in a freely varying
simulation.

The unidirectional random phases simulation has the additional property that it is
approximately Gaussian in the time domain (unless the spectrum is very narrow-banded) through
a central limit theorem. However, it is not Gaussian in the frequency domain, because the FFT
coefficients are of the form Am = c exp(-if), where c is a deterministic constant and 0 is a
uniform random variable on (0, 27r).

A multidirectional random phases simulation is approximately Gaussian, even in
frequency, because now Am = . ci exp(itj) and the summing over directions is enough to cause
approximate normality, at least in the nonextreme ranges of simulated data, through a central
limit theorem. A central limit theorem formulation suitable to these derivations is given by
Takano (1954) in a doubly subscripted, multivariate format. A typical derivation of the Gaussian
properties of random phase models is provided by Brown (1967).

Another property of simulations that should be understood by users is that of ergodicity.
In words, a process that is ergodic should have its probabilistic behavior for infinitely long time
intervals be the same as the probability laws for the ensemble of possibilities at a single time or
at several specified times. Because the simulation procedures presented previously are based on
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a fixed matrix of complex amplitudes, A mj, determined once and for all by a finite set of random
numbers, the time series given by the A mj will always have the random bias introduced by the
random number sampling variability, regardless of how long the time series is made. Thus, the
simulation process provided is not ergodic as N tends to infinity (see Jefferys, 1987; Tucker, et
al., 1984).

Tucker is particularly concerned that the standard deviation of the wave property be the
same from (x, y) location to (x, y) location, because such behavior is important in his
applications. In real wave data, if the time interval of sampling is long enough, and if the wave
field statistics remain stationary over the multiple hours of record required, ergodicity will force
the variance at every spatial location to he the same. However, in the usual 20 minutes of most
wave data, there will be substantial differences in variance from location to location. Real world
data show the same spatially varying sampling variability as the simulations.

Simulations of directional seas on the multidirectional case can be constrained to have
exactly a specified frequency spectral density. The procedure is as follows. The matrix of
complex amplitudes Amj is simulated with full sampling variability as shown in Equation 86.
Then the sequence {Amj; j = 1,...,J} is summed as:

p= J"(87)
J

E m2

i-i

Finally, the original Am, are divided by B112 to get a new set of Amj at that frequency. This is
repeated at the other frequencies so that the simulation will have exactly the specified S(mMf)
spectral density.

A similar procedure can be used to constrain the directional simulation to have a
directional spectral density that exactly agrees with the theoretical population directional spectral
density. Here the complex amplitude matrix is simulated as before with complete sampling
variation freedom. Then the A mj = Umj - iVmj are replaced by:

A 2.j/ 2 + V, j)1,2  (88)

The important thing to remember is that a simulation is always artificial. It will retain some
properties of the real world but will violate others. There is not one correct way to compute
simulations, but various ways that are appropriate to particular applications. Jefferys (1987) and
Tucker, et al. (1984) provide a real service in emphasizing the dangers in blindly using a
simulation procedure without appreciating the artificial aspects of the simulation. However, one
should not go too far the other way and condemn a simulation procedure for all applications,
when it is perfectly satisfactory in many problems where those particular defects are unimportant.

Usually, ergodicity is not particularly important for studies of wave forces on offshore
structures as long as the sampling variability for a given finite interval of simulation is
appreciated. A typical treatment involves looking at the force behavior in a number of separate
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simulations. This represents a sample "ensemble set" and convergence to the correct probability
laws or correct spectral density will occur by averaging over an increasing number of simulation
sets.

A very interesting application of the unconditional simulation procedures given in the
preceding pages has been developed by M. J. Briggs at the Coastal Engineering Research Center,
Vicksburg, Mississippi (Briggs, et al., 1987). He simulates water level elevation time histo-'f,
at directional paddle locations with an input directional spectral density, then converts these time
series to stroke magnitude, and finally produces a directional wave field within the wave basin.
He then reverses the procedure by using an array of model tank wave staffs in the center of the
basin as input to a directional spectrum analysis program and estimates the directional spectral
density that has been developed. Interestingly enough, the estimated spectra agree quite well
with the original input spectra, within the usual range of sampling and estimate variability.

CONDITIONAL SIMULATION OF IRREGULAR WAVES

The various linear properties of the irregular wave train will be assumed to follow the
multivariate normal probability law over space and time. Within this framework, conditional
probability laws are themselves multivariate normal and an elaborate theory can be constructed.
It will be assumed in the following that the reader has some familiarity with multivariate
statistical analysis and matrix theory.

The problem that will be considered here is the following. Suppose wave properties have
been measured for some set of wave conditions of interest, and the directional spectrum S(f,O)
has also been estimated or an acceptable model has been found. What are reasonable time series
for other wave properties co-occurring with the measured set, or for the same wave properties
at times other than the measurement intervals?

The wave properties that were not measured are stochastic processes that are to some
degree correlated with measured data. Depending on the extent and amount of the actual data,
the nonmeasured wave properties may be constrained to strong agreement with the measurements
or may only be weakly related to them.

Conditional simulation of wave property time series statistically consistent with a specified
measurement set provides a very powerful approach to certain ocean engineering problems. The
method does not provide a single determination of the nonmeasured time series, but rather one
for each simulation. The range of variation from simulation to simulation provides a measure
of how strongly the measurements determine the structure behavior.

Although these methods are quite new in ocean engineering, they have had some use in
the petroleum industry (Rodenbusch and Forristall, 1986) and the author is aware of at least two
other studies where these methods were highly successful in applications to ocean waves
(Vartdal, Krogstad, and Barstow, 1989). Rather similar methods in geostatistics and mining
(Journel, 1974; Borgman, Taheri, and Hagan, 1983) have been used for spatial random fields
to some extent for several decades.

The usual computer simulation of waves (Borgman, 1982b) satisfying a specified model
for the directional spectral density suffers from a serious practical defect if one is primarily
interested in producing very large waves. Most simulations produce average waves. Very long
computer runs are required to capture the occurrence of an extra large wave. However, the
conditional simulation starts with the inclusion of a large wave profile embedded into the wave
train. The various associated kinematics are produced consistent with this large wave, for each
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simulation. Every computer run produces another simulation that is appropriate to the
engineering analysis.

A large variety of problems can be approached from the conditional simulation
perspective. In addition to using measured storm wave intervals to condition on, one could
introduce wave groups of three or four large waves in sequences, condition on these to produce
the associated kinematics, and then impose all this onto a structure for dynamic behavior.
Another type of investigation might be to study the variability in kinematics associated with a
large Stokes'-type wave profile, when a directional spectrum is present with various degrees of
spreading. Undoubtedly many more diverse applications will be found as these methods become
more widely known.

Multivariate Normal Probability Law

The n component vector V with mean t and covariance matrix C, will be said to behave
according to a multivariate normal probability law if its probabilities of occurrence follow the
probability density:

Fv(v) = [(2 1)n'2 V[]- exp[-(v - I.)TC-l (v _ 1L)/2] (89)

where the superscript T denotes the transpose, I CI is the determinant of C, and C-1 is the
inverse of C. The inverse of C in the exponent can be replaced with a generalized inverse, C +,
if suitable restrictions to the domain space are introduced (Pringle and Rayner, 1971, pp. 70-72).
It is often more convenient to use a shorthand notation for the specification of multivariate
normality as:

V: N()i,C) (90)

This is read as V is multivariate normal with mean IL and covariance matrix C.

Conditional Normal Density

Suppose the random vector V can be broken up, or partitioned, into two parts, V, and

V2, and that the combined vector satisfies:

(_I): N C1 (91)

That is,
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E[VIJ - IL (92)

E[V2J = - 2 (93)

covariance matrix of (V1 ) = E[(V1 - P,)•, - -,,)T C,, (94)

covariance matrix of (V2) - C2 (95)

cross-covariance matrix of (V,,V 2) = E[(VI - P I)(V 2  2 )T] -- C12  (96)

Suppose specific values for V, are assigned numerically as V, = vi. Here v, is a list of
numbers, while V1 is the abstract random vector. Then the probability density for V2, given V1
= v1, is (Anderson, 1958):

(V2 IV, = v,): N(z + CT•Cl-I(v,-, Tw -Cx I C~z (97)

In its simplest form, conditional simulation is just any procedure for producing a vector V2 with

the mean vector and covariance matrix given above.

Conditional Simulation Method

A straightforward method (Borgman, Taheri, and Hagan, 1983) is given by a two-step
procedure:

1. Unconditionally simulate V, without reference to V, = v1. Let V, and V2 denote
these unconditional simulations.

2. A conditional simulation is provided by:

(V2 JV'=v,) = CTC-c 1(v,-V,)+V 2  (98)

All of the techniques based on this procedure require substantial facility in deriving and
computing the covariances in CII and C12 and in inverting C11. For example, consider two
general wave properties of the form of Equation 25 combined with Equation 39. Let X = 1,2
[with At = time increment, Af - 1/(NAt)]:

I

BX(mAf;x,y,z) = EAmjG,(mAf,z)T;(m Af) H;(j AD)
j-1 (99)

* exp[-i PO kmJx cos(j AO -0.) + y cos(j AO -Oy)}]

for 0 < m < N/2. Set
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B'(O: xy,z) = 0

B1 (N Af/2;xy~z) = 0 (100)

B•([N-m]Af;x,y,z) - B;(mAf;xy,z)

for N/2 < m < N. The wave properties, in time domain, are given by:

N-I

b1(nAt;x,y,z) = • BQ(mAf;xy,z)exp(-i2nmn/N) 101)
m -0

for n = 0,1,2,...,N-1.
The covariances between two time domain wave properties are developed in Theorem D

of the Appendix. Titat is:

0< = GA (mAf,z)T, (mAf)Hl (jAO)

* exp[-iPok.mxcos(jUAO-x)+ycos(jAO-O,)i] (102)

Equation 2 of the theorem gives the covariance between the two wave properties one at time n
At and the other at time n/ At. The location coordinates (x1,yj,zl) for the first wave property

must be substituted into while the corresponding values for location of the second wave

property (x2 ,Y2 ,z2 ) must be substituted in (2). Stated in terms of integral,

E[b(1)(t)b2)(t+c)] = f f S(f,0)Q Q)(fO)Q(2)(f,0)exp(i2xfr)dOdf (103)
-- 0

The computation of the wave property covariances can be quite a task. Some
simplification and acceleration of the calculations can be achieved by introducing the Fast Fourier
Transform algorithm. However, this still leaves a substantial effort in manipulating C12 and

computing CHI for the often large matrices that occur in realistic applications.

Conditional Simulation of Complex Wave Amplitudes

Great savings in computer run time, as well as the achievement of very substantial
simplification and clarification of the model in application, is obtained by centering attention on
the matrix of complex wave amplitude, A m = UI - iV introduced previously. The Amj are
conditionally simulated, given the specified wave properties and the selected directional spectral
density.
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5 First Simulation
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Figure 4
Two conditional simulations of water particle velocities, given the profile in

Figure 3. (Waves from heading of 600: x axis east: y axis north:
velocities at 15.7 m below mean water level.)

The actual calculation of these complex amplitude simulations requires a fairly
sophisticated introduction of frequency domain methods as interrelated to time domain data. The
Appendix provides a very succinct summary of a fundamental set of theorems giving a theoretical
framework for the discrete Fourier transform.

Frequency Domain Conditioning

A common special case in applications arises when the wave profile or other wave
properties have been measured over the full time interval of interest. Perhaps this represents an
interval of time during a historical storm when wave action was quite high. A simulation of the
wave kinematics throughout the wave, conditioned to agree with the occurrence of the measured
time series, is needed for wave force analysis. What is the most efficient way to develop this
conditional simulation?

A very effective technique is to first perform FFT on the measured time series to obtain
the Fourier coefficients, and then to conditionally simulate each Amj = Umj - iVmj separately,
given the Fourier coefficients {B;.(m At; x, y, z), I. = 1,..., number of measured time series}
for the measured wave. This will be illustrated with the case for one measured time series and
the case for two measured time series. Figure 4 gives examples of such simulations.
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Consider first the situation for one measured time series {b(n I.t), n = 0, 1,...,N- 1), with
FFT coefficients:

N-I

B(mAf) = b(nAt)exp(-i2xmn/N) (104)
m-0

with the Q, from Equation 102, B(mAf) can be related to the complex-valued wave amplitude

as:

J
B(m Af) = A Qj (105)

J-i

The goal, then, is to conditionally simulate Urnj and Vmj, give B(m Af).

The following structural assumptions will be made:

1. All time series will be assumed to be covariance-stationary with zero mean.

2. All time series will be repeated periodically.

3. AOj = AN/2,j = 0 for all j = 1,2,...,J.

The imposition of the second assumption has the effect of making the last part of the simulation
have a correlation with the first part. If this causes improper behavior in the application of the
series, about three wave periods of simulation should be deleted at the end of the simulated time
series, before it is used. This just means that N is made a little larger than is needed in the
application to adjust for the deletion of some time steps at the end of the simulation. The
addition of the periodicity assumption produces such a clean, elegant statistical structure in the
Fourier coefficients that it is definitely worth the trouble of compensating for the minor
distortions introduced by the assumption. The imposition of the third assumption just forces the
simulations to have mean zero and to have no energy at the Nyquist frequency.

The covariance matrix for Amj and

B(m Af) =- O + i T, (106)

can be constructed from Theorem D in the Appendix. It is best stated in terms of the real
random variables Umj, Vmj, t. and Tm" For 0 < m < N/2:
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JVJ
Ss j1i~1r 0 s.i Rt(Q) s.Im(Q. )

0 0 SjlImjf srjIb1(Qj1 ) -SjRe(Qj) (107)

SjRe[Qwi Sj m(Q1 j) S0J 0
S Im(Q.j) -SjRe[Qmj] 0

The actual conditionai simulations are then just an application of Equation 98, with:

C1= [1 0E SjIQMJuIAfA0/2 (108)
0 1J-1

=1 [Re(Q.AJ) Im(Q.i) I sj,&O& (109)
S Im(Q-j) -Re(Qj)] 2

V1 = from the measured time series (110)

The unconditional simulation of:

V2 mj,,U 
(111)

can be produced easily from two independent standard normal random numbers (Z1 ,Z2) with the
formulas:

u,,,.,, - z,(SmJ Af Ael2)'/ (112)
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Vaj.,, - Z-(SmjAfAO/2)" 2  (113)

This is repeated for the other j-indices with additional pairs of j-indices with additional pairs of
independent standard normal random numbers. The unconditional simulations of #, and #a e
completely determined by the set of values {(Uný,usVmjUS), j = 1,2,..., J} as:

J

O.,.u + i TL,,.u = (UMj,.. - i V.,jU) Qmj (114)
i-1

Equation 98 for the conditional simulation becomes:

(V2 iV1 VI =v ) IU '' sl

Re(Qmj) Im(Q.j)

Im(Qj) -Re(Qj) • s.,1.Ij Af Ao/2
j-1

O* O- U 11+(15

The validity of Equation 115 can be verified by confirming that:

J

Bmc'S E (Um=, _i VMjS)Qj (116)
i-i

is the same as B(m At) in Equation 106. That is, the complex amplitudes produced by
conditional simulation do, in fact, produce the FFT coefficients for the conditioning time series.
The proof of Equation 116 follows from:
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oj.Co- iVoaj.C) - (1, -i) (e17)

Applying this to Equation 115, one gets, after some algebra,

Uaj. - i Vaj-") Q~jS [B.a -B...] + A'j,,J (118)

y s.IQ.M rAf AO
j-1

The substitution of Equation 118 into Equation 116 gives:

J

B. Bw -Bi' + Amj~usQmj2 = Bm (119)
j-1

which is the verifying equality.
The covariance is more complicated if there are two time series that are simultaneously

measured, which are to be used for conditioning. Then,

= ( 1)Q = .2] +ijy°) (120)

j-1

B-:) : Azzj Qý(2 = 'O-• + i 17() (121)

J-1

are the conditioning FFT coefficients. The covariance matrix which must be evaluated is that

for the six variables T(2) wi) , wi') u vp. For this,
A- ,-m , M I P--m , Vmj--orJh34
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IQ r0 Re[Q.,ýQ~j2fl mi[Q2*Q~2,]
r[

0I

o i• r, -,-[Q2zQ' 2 ] -Re[Q2••] __r0

""I Re[Q.•') ] -*[Q,.Qj] IReIj 0

........ (122)

Re [Q0°j) 'n4Q2)

,M[<] -Re[Qo•] Af A
C1  =S~Re[Q~j] hi[Q:J] 2(13

The conditional simulation proceeds in two steps as before. First, an unconditional simulation
of U and V is formed with pairs of independent standard normal random numbers {Zmjl,
Zmj2; 0 < m < N/2, j = 1,2,...,J} with the formulas:

Urj.u, =Z7rji (Smj AfAO/2)A (124)

VMr,,. = Zm-j2 (Smj Af A012)tt2 (125)

The unconditional simulation of B(_) and B2) is achieved with Equation 105 as:

B-,,S = Ro mu, - iV. 1 ,)•) Q( (126)
j-I
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I
.. I) (127)B(2) (Unj~s= j.-iva .J-1

The second step consists of substituting all these results into Equation 98. It can be shown, as

before, that the conditional simulation of the Anv, when used with the transfer functions QZ) and

Q1(), reproduce the FF17 coefficients used in the conditioning. However, the details are too
complicated for presentation here.

Tune Domain Conditioning

Time domain conditioning is addressed in the following problem. Suppose one or more
time series are measured over portions of the time interval of interest. The problem is to
simulate conditionally the time series for the rest of the time interval and for other wave
properties during the entire interval. Figure 5 provides an example of this technique.

Conditioning First Simulation-
20 - Interval - Second Simulation---

10, 1 *1 \' \,•, ". /,, -
77 (t 00

-10

-20,
20 25 30 35 40 45 50 55

Figure 5
Two conditional simulations of the wave profile for 30 < t < 55,

given the profile in Figure 3 for 0 < t < 30.
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The technique will be illustrated with a single conditioning time series, consisting of the
water level elevations, i7(n At). Suppose {vi(n At), n = 0,l,2,...,v}, where v < N is known
and is to be used for conditioning. The covariance matrix for {,7(0),i7(2 At),n(2At) .... n(No
At),U -Vj} forms the basis for the simulation.

N-I J

Ck = E S.,jexp[i2akm/N]AOAf (128)
W-,0 J-1

Then C11 is:

CO c1  C2  ... Cv

CI Co CI ... CV-1

C 1 1  - C2  C1  C0  - Cv_2  
(129)

cv Cv-I Cv-2 - CO

and the C12 matrix is:

Sj Af A0 0

Smj cos(2 n m/N) Af A6 Sj sin(2 n m/N) Af AO

1 S cos(4 u m/N) Af A0 Snj sin(4 n m/N) AfAO (130)
S.j cos(6 % m/N) Af A0 Smj sin(6 n m/N) Af AO

Smj cos(2 c mv/N) Af AO Smjsin(2 irmv/N) AfA0

The conditional simulation proceeds by first using Equations 124 and 125 to get Umj,us and
Vmj us. Then the unconditional simulation of the i7(n At) is computed from:

N-I J

11W(nAt) = F, Aij,,.exp(i2 n mn/N) (131)
m-0 J-i
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Finally, Equation 98 is used to get the conditioned set of complex wave amplitudes with:

T1 (0) 0
,1(A4) [ ,.(A0

vi- M,(2.At) V, Y,- ,.8(2At) (132)

n(v At) jN ,1..vAr)

The inversion of C11 can be done with special techniques for Toeplitz matrices (Golub
and Van Loan, 1983, pp. 125-133) or with conjugate gradient iteration (Golub and Van Loan,
1983, pp. 362-369). Any technique that solves C1 1x = b for x, given b, can be used. If C11

is singular, the generalized inverse of C (Searle, 1983, pp. 212-226) can be used in place of C

in Equation 98.

TECHNIQUES FOR COMPLIANT STRUCTURES

The techniques for simulation presented previously are based on a fixed coordinate
position (x, y, z). If the structure is moving, there are difficulties in following the structure
from one position to another. One way to proceed would be to compute time series at each
intersection for an extensive three-dimensional grid over the (x, y, z) space. Then the velocities
and accelerations at any arbitrary space location could be interpolated. However, for a typical
structure, this procedure requires such formidable amounts of computer storage as to be
impossible on even large computers.

An alternative procedure is presented here that surmounts this difficulty and requires only
moderate computer capacity. The procedure is based on the need for wave kinematics and other
wave properties only within a relatively narrow rectangle of horizontal coordinate position as
compared to the wavelengths involved. The approach involves the expansion of the wave
properties in Legendre orthogonal polynomials in x, y, and z.

Let

p,(x) = bo+blx+... +b~x

p:(x) = bo+bj'x+...+bx 
(133)

be the Legendre and shifted Legendre orthogonal polynomials of order n (Hochstrasser, 1964).
The coefficients are selected so that:
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1 0, ifm*n
f p.(x) p,(x)dx - 2n , ifrm-n (134)

-I2 n + l 1

1, if m * n

f p.(x)p(x)dx I (135)
0 (2n+l 1

The Legendre polynomials are defined for -1 < x < 1 and the shifted Legendre polynomials are
defined for 0 < x < 1.

The first several Legendre polynomials are:

P0(X) = 1 (136)

p1(x) = x (137)

p2 (x) (= (3x 2 -1)/2 (138)

p3 (x) - (5x 3 -3x)12 (139)

p4 (x) = (35x4 -30x 2 +3)/8 (140)

p3(x) = (63x_-70x 3 + 15x)18 (141)

The shifted Legendre polynomials are related to the regular Legendre polynomials by the
relation:

p:(x) = pPu(2x- 1) (142)

The use of orthogonal polynomials to approximate an arbitrary function g(x) defined on
(-1,1) can be illustrated as follows. Suppose the approximation to be used is:
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N
g(x) . a~p,(x) (143)

a-0

The coefficients an are chosen from a "least-squares" criterion. Let an be those values that
minimize:

Q = g(x)- a p(x)jdx (144)
-f a-0 a

Then,

-21 g(x)- a X (145)

Q is at an extreme if OQ/eak = 0 for all k = 0,1,2,...N. This reduces to:

N 1 I

E a. fp,(x)p,(x)dx = fg(x)Pk(x)dx (146)
R-0 -1 -1

But, by the orthogonality relation, this further reduces to:

I

ak = 2k+1) f1()k()d 17

The similar development for shifted Legendre polynomials gives:

ak = (2k + 1) fg(x) Pk (x) dx (148)

0

How can these relations be applied to ocean wave kinematics? The essential canonical form for
a linear wave property is given in Equation 23. It should be noted that, in every case, G(z) is
either 1.0 (water level elevation) or is of the form:
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e-k's +scI e-k(2d-z) (149)

1 + s2 e-2k(1

where km is the wave number. Thus, the general wave property b(n At) can be expressed from
Equation 35 as:

N-I

b(nAt) E • Brei2UamIN (150)

where Bm is the FFT coefficient given by:

J

B. = FA,,jexp[-i Polrmlxcos(0-ex)+ycos(0-0y)1] (151)
i-i

for sea surface elevations, and by:

j {e-•' ÷. +S e- k(d -z)}

B. E A.j T.Hjkd
J-1 [1 +s 2 e-I

* exp[-i 13ok{X cos(W -0) + y cos(@ -Oy)l] (152)

for the other wave properties. These can be expressed as a sum of products of separate functions

of x, y, and z as follows:

1. Sea Surface

J

B,= E Amjexp[iPok.x cos(O-e.)]exp[i pokY ycos(O-Oe)] (153)
J-I

2. Other Wave Properties
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B,,- Auj. THj {eC63+s3e-kc.d_}

jII+s2e-'

• ep[-i ok.x cos(o- .)]exp[-i pok.ycos(o-e,)] (154)

Suppose it is desired to obtain a good representation locally in the vicinity of the structure.
Consider the volume,

xo-D, : x x o+ D, (155)

yo-D 2 ! y y Yo+D 2  (156)

0 1 z < d (157)

(Here z has been taken as positive downward and zero at mean water level.)
It is natural to scale function as follows:

1. Sea Surface

B, = E Amjexp[-i okmxocos(9- .)]exp-i Pok=Di-.--. cos( - I.)
i-Di

•exp [-i 00o km yo cos(O - OY) ] exp[-i go k, D2 ( D Yo cos(O - ey,)]

...... (158)

2. Other Wave Properties
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B AmJwmHjj -. tekzs id-z)~SE-kd +1e

J-1 1+ S2e

* exp[-iPok.xo cos(O-0.)]exp -iPok Di -( Cos(0-) 0 ,)

* exp[-i PokmYO cos(( - 0Y)]exp [i POk 1 D2 (Y DY )co(o - •]--

...... (159)

Let

( - N x_- Xo

e-xz = k ,P;(e -,) (162)

1=0

where k0 is a selected single reference wave number. For many applications, the second term,
e-xp(2d-O) (163)

is negligible because depth is large. For the moment, suppose that this second term can be

ignored (it will be reintroduced later). Then, if

u - (x- xf)/I0

v - (y - ye)/D 2  (164)

W1 ---- e -'kz)
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we have the following:

1. Sea Surface

B, Amj up-i Po km[xo cos(O-e,) + yo COS(0- e,)]
j-

[N (N5

2. Other Wave Properties

B Aý,jTmH.jexp{-iP 0k.[x0 cou -o0.) + Y cos(e -O0)1}1 +s 2k2d

* [ .p P(U) E 6ppp(v)[ Op(e-z)1 (166)
6-=0 1 -00 .

If these are substituted into Equation 150:

N N N
b(nAt) = • Q,..(nAt)p4 (u)pp(v)p;(w 1 ) (167)

9=O P.0 ( ,=0

where (sea surface case):

QG.p.Y(nAt) fi [ i.6 pA.Aexp(-i iP0k. x0 cos(0-00)}
m=O [i-i

* exp{-i p0kuyo cos(0-O0r)}]e12 xmnnN (168)

Equation 168 is an FFT of the quantity within H for each combination of a, 0, and y.
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The other wave properties have a similar expression, with

N-IQ,(n,&t) ano•[j,,.••, TH

Q4'P. j, E .S d jT Hj
u-0 1 P1

• exp{-i 00ok [xo cos(e- +y0) cos(e -O,)fl (169)

e i2 x man/

At a given time, nAt, many of the Qp, Y for a given wave property are negligible.

After all, the region x0 ± D, and Yo ± D2 is relatively small compared to the wavelengths.

Hence, low order polynomials are all that are required in order to represent the variation over

the horizontal region. The vertical variation is attenuated more or less exponentially with depth,

so a polynomial in w, should only need relatively low order.
Hence, at a given time, only a few Q,. R. will be needed to represent the wave property.

The particular coefficient needed may, however, be different from one time step to another. An

interesting point here is that the Q•.B ,, (nAt) can be, themselves, computed by the FFT

algorithm simultaneously for n = 0,1,:21.... ,N-1.
Up to this point, the actual computation of 6 and Y has not been explicitly

stated. From the definition of orthogonal polynomials,
1

i = 2,,+ 1 fexp[_ikml~oDt cos (0 _0,)a ]p, (u) du (170)
-I

1

b = 2[ +1 f exp[ikm.PD 2 cos(0_-0,),]p, (v)dv (171)
2 _

-11

e = (2 y +1)fw p (w,)dw, (172)

0

Other depth term
Let
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W2 = e-k9Cd- Z) (173)

Then an exactly similar expansion with the same coefficients can be developed. The resulting
representation of the wave property is:

N N N

b(n At) = F , QE .,(n At) p. (u) pp (v)
-0 .o- y.0 (174)

JP; (W) + SI P; (wN)O

Statistics of Random Wave Geometry

In testing the statistics of wave properties, such as height and period, it is important to
distinguish between properties for individual waves and average properties above a specified time
interval. The individual wave properties are the properties that a single wave possesses at a
particular instant in time. Individual wave heights are usually defined in terms of maxima or
minima between zero crossings of the water level elevation above mean water level or in terms
of a time-varying envelope function. Individual wave periods may be defined in terms of time
interval between up-crossings or in terms of functions of time derivatives of various orders of
the water level elevation. In contrast, time interval average properties such as significant wave
height or predominant wave period are usually taken from the wave spectral density holding
during that time interval.

There is a very extensive literature on statistics of wave properties. Review and
expository papers are given by Borgman (1982a) and Ochi (1982). In addition, there are
expository chapters in recent books (Goda, 1985, Chapter 9; Muga, 1984; and Sarpkaya and
Isaacson, 1981). The reader is referred to the above for an entry into the literature. The
comments here will be directed to more recent results or to topics not generally covered in the
cited references.

The usual choice for the probability law for individual wave heights is the Rayleigh
distribution, or some closely related generalization, such as the Weibull distribution. If the
significant wave height parameter, Hs, in the Rayleigh distribution is determined from the
traditional 4.004 times the area under the wave spectral density (Borgman, 1982a, Equation 19),
then empirical data on wave heights usually show a deviation from the Rayleigh probabilities for
large waves (Forristall, 1978; Krogstad, 1985). An appropriate modification of the Rayleigh
formula that agrees well with data is a form of the Weibull distribution:

FH(h) = P[H : h) - 1 -exp[-(4h/H,)I/] (175)
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If a = 2 and 0 = 8, then the above formula reduces to the usual Rayleigh distribution function.
Forristall found that a = 2. 126 and P = 8.42 were good choices for his data. Krogstad reports
values of a ranging from 2.37 to 2.50 and values of 0 from 12.5 to 15.6.

An alternative to the Weibull modification is suggested by Goda (1978), who found that
the significant wave height is better estima'ed by using 3.8 times the area under the spectral
density instead of the narrow-band theory value of 4.004. Similarly, Chen (1979, p. 19) found
the bes, multiplier to be 3.88 for hurricane Carla and 3.82 for hurricane Camille (both Gulf of
Mexico storms). Horikawa (1988, p. 46) discusses some of these results. With these reduced
values of Hs, the Rayleigh ditribution gives fair results without modification. Good results with
the Rayleigh formula art also obtained when the mean-square (zero-crossing) wave heights can
be obtained directly from water level elevation time series (Borgman, 1973b, Figuie 7).

The conditional probability law for individual wave periods, given the wave heig'it, was
shown by Longuet-Higgins (1975) to be normally distributed for waves with a narrow-band
spectral density. This result was shown by Chen (1979' -tnd Chen, Borgman, and Yfantis (1979)
to hold approximately for hurricane waves for wave heights larger than the significant wave
height. In particular, Chen found that (TI H = h) was approximately normal with the mean
equal to 0.85Tp and the standard deviation equal to 0. 15T Hs/h. Here, T_ is the period
associated with the frequency at the peak or mode of the wave spectral density and H, is the
significant wave height. Chen's results were based on an analysis of wave records in hurricane
Carla and Camille in the Gulf of Mexico. Krogstad (1985) found similar results for North Sea
waves although the standard deviations were somewhat larger. Krogstad suggests that this may
be due to the presence of swell in his data. Goda (1978) found quite similar results in a suite
of data that he had collected.

The joint probability law of height and direction of travel for individual waves was
developed by Borgman (1981) and later extended to treat the joint probability law for height,
period, and direction (Ogbi, 1983). The probability law for height and direction appears to agree
well in the data comparisons that have been made, while the height-period-direction trivariate law
is much more speculative and needs to be checked more thoroughly against data.

Probability laws for wave properties over a period of time, such as the maximum wave
height, have received substantial attention in the literature. In the multiyear or decade frame of
reference, probabilities for maximum wave height become intimately interrelated to the storm
climatology of the region. A very detailed study of such topics for the Gulf of Mexico was
sponsored by a "consortium" of oil companies (Ward, Borgman, and Cardone, 1979). Other
discussions of the probability law for long-term maximum wave height are given by Ochi (1982,
p. 283ff.) and Naess (1984). The probabilities for maximum wave height over a time interval
within which the random seas are statistically stationary may be treated with extensions from the
Rayleigh distribution (Borgman, 1973b; Ochi, 1982, p. 287ff.; Goda, 1985, p. 227) or from
stochastic process theory (Boccotti, 1985; Naess, 1985).

The study of the long-term probabilities for spectral shape parameters is very data
intensive and specific for each location. Usually, this kind of study involves a cooperative effort
between meteorologists for the wave hindcasts, engineers for reievant structural concerns, and
statisticians for the probabilistic data analysis (Ward, Borgman, and Cardone, 1979; Borgman
and Resio, 1982),
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Wave Group Simulation

The statistics of wave groups is really a topic in its own right, with rather different
mathematical techniques and concepts (Goda, 1985, p. 230ff.), and will not be treated here.
Instead, several comments will be introduced regarding ways that wave groups can be embedded
into a conditional simulation. If a short time history of wave group water level elevations is
available from measurements, the rest of the record can be conditionally simulated on
reproducing that interval of data within the simulation. Thus, one can produce a number of
simulations, each containing exactly the specified group.

Another way to force the occurrence of a wave group, within exactly specifying the time
history, is to introduce a short sequence of large water level elevations that are separated
approximately by the period of the waves in the group. That is, each large value is placed in
the time record at a separation of, say, 10 seconds from the previous and subsequent large
values. The intermediate time series values and the rest of the wave record are then
conditionally simulated, given the assigned magnitudes of the large values. The simulated wave
amplitudes in the group will be at least as large as the large values, but some of the simulated
intermediate values may rise a little height. This forces the period of the waves in the simulated
group to vary sightly from the interval of separation of the imposed large values and allows the
wave heights in the group to vary somewhat from simulation to simulation.
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LIST OF SYMBOLS

a Parameter in von Mises spreading function in Equation 65

a Wave amplitude in Equation 2

an, an* Multiplying coefficients for orthogonal polynomials in the

representation of an arbitrary function in Equation 143s, 147, and 148

a,(xy,z,t) x component of water particle acceleration

ay(x,y,z,t) y component of water particle acceleration

az(x,y,z,t) z component of water particle acceleration

,, Multiplier coefficient for Legendre polynomials in Equation 160,

defined in Equation 170

Amj Complex-valued wave amplitude at frequency index m and direction

index j (see Equation 39)

b•, b: Coefficients in orthogonal polynomials in Equation 133

b(x,y,z,t) General representation of a wave property in Equations 11 and 23

B(f;x,y,z) Fourier transform of (x,y,z) (see Equation 25)

b(nAt) Time sequence of general wave properties

B(mAf) Frequency sequence of FFT of general wave property

bp Multiplier coefficient for Legendre polynomials in Equation 161,

defined in Equation 171

c Parameter in wrapped normal spreading function in Equation 63

ck Sequence of covariance in Equation 128

cYr Multiplier coefficient for shifted Legendre polynomials in Equation 131,

defined in Equation 172

C Covariance matrix of V in Equation 89
C1  Inverse of matrix C

C+ Generalized inverse of matrix C

I CI Determinant of matrix C

d Water depth

daj Parameter in delta stretching in Equation 74
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D(e; f) Direction spreading function in Equation 43

Dl Half-width of x variation in Equation 155

D2 Half-width of y variation in Equation 156

E[.] Statistical expectation operator

f Frequency

fo Frequency at mode of spectral density in Equation 46

fR(r) Rayleigh probability density in Theorem A

fxy(x,y) Probability density in Theorem A

F(a) Rayleigh distribution function in Equation 81

Fv(v) Multivariate distribution function for random vector V, with

argument v, in Equation 89

g Acceleration due to gravity

g(x) Arbitrary function of x in Equation 143

G(z) Function in general representation of a wave property

G(X) Function of X in Equation 50

H(a) General function in the representation of a wave property = V¢2]

j Direction index

J Number of angle increments to cover circle of directions at angle

increment A0

J Jacobian of transformation in Theorem A

k Wave number = 2Tr/wave length

k Lag index in Equation 128

km Wave number in Equation 149 for frequency index m

ko Single reference wave number in Equation 162

K Norming constant in the generalized cosine-square spreading function in

Equation 67

m Sequence index in frequency series for the discrete Fourier transform in

Equations 27 and 28

mB Beginning index for the interval of energetic in the frequencies in the

frequency sequence (see Equation 36)
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ML Last index for the interval of energetic in the frequency sequence (see

Equation 36)

n Sequence index in time series for the discrete Fourier transform in

Equations 27 and 28

n Index in Fourier series in Equation 63

n Order of orthogonal polynomial in Equation 133

N Length of time or frequency sequences in the definition of the discrete

Fourier transform in Equations 27 and 28

N(46, C) Designation of a normal probability law with mean vector I& and

covariance matrix C

p(x,y,z,t) Water pressure deviation from static pressure

Pn(x) Legendre polynomial in Equation 133

p:,(x) Shifted Legendre polynomial in Equation 133

P Parameter in Ochi-Hubble spectral model in Equation 50

Q Integral square error of approximation in Equation 144

Qj) Combination of functions in Equation 102

Q,.(n At) Total coefficient in multivariate orthogonal polynomial

expansion of the wave property at time nat in Equation 169

R = /X2 + Y2  In Theorem A

sI Integer in Equation 149

= -1 for sinho numerator wave property in G(z)

= + 1 for cosho numerator wave property in G(z)

S2 Integer in Equation 149

= -1 for sinho numerator wave property in G(z)

= + I for cosho numerator wave property in G(z)

S(O) Frequency spectral density

S(fo) Direction spectral density in Equation 40

So Magnitude of S(f) at mode of spectral density in Equation 49

t Time coordinate
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T(t) Function in general representation of a wave property

u Dimensionless x position in Equation 164

U Uniform random number in Equation 83
Um. Real part of Amj

v Dimensionless y position in Equation 164

Vx(x,y,z~t) x component of water particle velocity

Vy(x,y,z,t) y component of water particle velocity

Vz(xy,zt) z component of water particle velocity

(V2 1V1 = vI) Conditional random vector V2, given that random vector V1 is

equal to v1

Vmj Negative of imaginary part of Amj

wn General time sequence in definition of the discrete Fourier transform in

Equation 28

Wm General frequency sequence in definition of the discrete Fourier

transform in Equation 27

W1 Dimensionless z position function in Equation 164

w2 Dimensionless z position function in Equation 173

x Horizontal coordinate of position

x Argument of orthogonal polynomial in Equation 133

X Random variable in Theorem A

y Horizontal coordinate of position

y Variable in integration change-of-variable in Equations 47 and 48

Y Random variable in Theorem A

z Vertical coordinate of position

zaj Delta-stretched z value in Equation 74

zs Stretched z value in Equation 72

Z Standard normal random number in Equation 86

a General angle in Equations 9 and 10
I Peakedness parameter in the generalized cosine-squared spreading

function in Equation 67

56



a Parameter in gamma stretching in Equation 77

•o = 1 if the waves are traveling toward direction 0

= -1 if waves are coming from direction 9

0 Parameter in gamma stretching in Equation 77

"If n Time sequence in Theorem C

rm Discrete Fourier transform of In in Theorem C

r(x) Complete gamma function

5 Effective width in Equation 51
A Parameter in delta stretching in Equation 74
Af Frequency increment (see Equations 31 and 32)
At Time increment (see Equations 31 and 32)
AO Angle increment

E 1,`2 Expectations in Theorem B

,q(x,y,t) Water level elevation
0 Direction of wave travel

ox Direction of position x axis

Oy Direction of position y axis

0HP Half-peak angular spread in Equations 64, 66, and 68

00 Principle direction of spreading function in Equations 63, 65, and 67

x Peakedness parameter in the Ochi-Hubble spectral model in Equation 46
X Subscript in Equations 99 and 100

Mean vector of random variable V in Equation 89

Maximum lag of importance in covariance sequence in Equation 128,
that is, ck = 0 if k > P

p Water density

Po Wave property at z1 = 0 in Equation 71

pý Derivative of wave property with respect to z at z = 0 in Equation 71

PS(Z) Stretched wave property at elevalion z in Equation 77

02  Variance of sea surface in Equation 46

o, Standard deviation of sea surface elevation in Equation 76

Wave phase

Real part of B(mAf) in Equation 106

*, = arctan(Y/X) in Theorem A
'*'m Imaginary part of B(mAf) in Equation 106
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00 Infinity
subscript T Matrix transpose

subscript * Conjugation
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Appendix

THEOREMS

THEOREM A

Let (X, Y) be random variables with mean zero and variance a 2 . Define

R . (X 2 +Y 2 )t'2

0 = arctan(Y/X)

Then X and Y are independent and normally distributed if and only if R and 0 are independent.
R is Rayleigh distributed, and 0 is uniformly distributed on (0, 21).

Note: The Rayleigh distribution here has probability density

fR(r) J(r/o2 ), exp(-r 2/2 0 2), r a 0

1[0, for r < 0

Proof. Let X and Y be N(0, a 2) and independent,

fX,,(x,y) = (1/2 ,i 2 )exp[-(x 2 +y 2 )/2 o2]

Let

X = R cosO

Y = R sinO

or

R = (x 2 + y2)112
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9 -arctan(Y/X)

Then the Jacobian of the transformation is

(xy) cos -rsin r
CIO,€) sin¢ rt-zo6¢ I

Hence,

f-.(r,*) _ (1/27C 2 )exp(-r 2 /2 2XJ) - (1/2x)(rt2o2 )exp(-r 2/202 )

define for 0 < 0 < 2v and r > 0. But the density for a uniform random variable on (0, 2w)
is:

- 1/2 w, for 0 < 0 < 2i

10= , otherwise

So

fp . (r, ) = f.(O)fR(r)

It follows that R and , are independent. 0 is uniform on (0, 27), and R is Rayleigh
distributed.

THEOREM B (Borgman 1973a)

N-i

Let i = VT and bn = E Bmexp(12 n mn/N) forn = 0,1,2,...,N-I, beacovariance-
m-0

stationary, mean zero, sequence of real-valued random variables that are periodic with period N
and a realization of a time series sampled with time increment At. That is,

Elbn] = 0

and

A-2



Cbb(k) =Elbabak]

does not depend on n. Then if

Af = 1(N At)

N-1

S.(m) =At E Cbb(k)exp(-i2ixmn/N)
k s0

and

Bra = UM - iVi

it follows that:

1. VO =VN/ 2 = 0:

2. forO0< m <N/2, UM= UN-m and Vm = -Nm

3. E[Um~] = EIIVmI = 0:

4. Cb,1,(N-k) = Cbb(k) and SRB3(N-m) = SBB1(m) are real-valued;

5. IUO U1 VU 2--U(N/2)-I, V(N/2)-1I UN/2} are uncorrelated;

6. Var[UOI = SHBOWA, Var[UNI 2I =SBB3(N/ 2 )Af, Var[Uml = V-v[Vml

SBBA f/2 , [for m = l,2,...,(N/2)-lJ, and SBB(M)Af = E[IBmI12] for all m.

Proof. By the discrete Fourier transform inverse,

B N-i b~exp(-i2nmnfN)
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Because b. is real-valued.

1 N-I
B. -E bexp(i2nmn/N)exp(-i2nnN/N)

Nn.O

1N-I
= - bexp[-i2 u(N-m)n/N]

~BN-,

This proves items I and 2 when combined with the periodicity. Also, from the FFT inverse,

E[13JN= E[bJexp(-i2nmn/N) = 0
N n-o

This proves item 3. Because,

Cbb(N-k) = E[bfb.,_N.k = E[b.bk] by periodicity

= E[b.-kb.] = E[bnbnk] by covariance stationarity

= Cbb(k)

From the symmetry on Cbb(k),

N-I

SBB(m) = At E Cbb(k) exp(2 t km/N)
k-0

which is real-valued. Thus, item 4 is proven.

For 0 _< m < N/2 and 0 _< m'2 < N/2, consider:

e = E[B;Bin.] = {E[UmUm.] +E[V, Vm.} +i(E[VU.- E[UmVm.,]}

e -- E[BmBm.] - {E[UmUm.]-+E[VmV.} +i{E[VmUm,]-E[UmVm.]}
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These two expectations can also be expressed in terms of b. as

(1N-1 N-1 m'n -mn
1 N E[b.b..]Jexp -i2)N
Sn" 0 a.-o M,' n' + mn JN

Now let k - n -n, E[bnbn,] = Cbb(n'-n) =ý Cbb(k), and using the periodicity after setting n =
k+n.

( -- Cbb-+ C )exp i(-i2im'k/N) E exp-i2.( n)/
N2k-0 n-0OM + m]

But

N -1 () /N (N) m0

. + I(0) ifm= -Mi'

0, otherwise

With the stated constraints on m and m', m - m' is impossible. Hence, introducing the
definition for Sm,

(SBB() Af), ifm=m-,m,0, mN/I2

el) = (0), if Mn M
SB (m) Af) o
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If m = in', mn * 0, and m o N/2.

E[U2] + E[V=2] S(m f

E[UVmI-E[UVmI 0

E[U±]1-E[V.] - 0

E[UmVI+E[U.VmI - 0

It follows that, for 0 < in < N/2,

E[U2I E[V2] Sin(m)Af/2

E[UmVm] -0

Form =O0ormn= N/2, Vm =0 by item 1. SO E[U,] , S.(0) Af and E[U~42= S.(0) Al.-
If in * Mn'

E[UUm,.I+E[VmV,.] - 0

E[VmUm.I-E[UmVmn.] - 0

E[UUm,.]-E[VmVm.] - 0

E[VUm,.I+E[UmVm,.] =0
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Therefore,

E[UUm.] - E[V.3V.] - E[V=Um.] = E[UmVm.] = 0

Finally, if m = m',

E[IB.12] - E[U±+V±] - SBB(m)Af

This completes the proof of items 5 and 6.

THEOREM C (Borgman, 1973a; see Goodman, 1957 for continuous version).

Let the two sequences

N-I

b. E Bmexp(i2nmn/N)
m=0

N-i
E= r. exp(i 2 n ran/N)

m-0

for n = 0,1,2,...,N-l, be covariance - and cross-covariance - stationary, have mean zero, be
real-valued, be periodic with period N, and be a time series realization sampled at the time
increment At. Define Af = 1/(NAt) and

CWW(k) - E[bnbnuk]

CYY(k) E[yny.Dk]
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Cby(k) - E[boYS-k]

Cyb(k) = E[yaba-kI

FS9B(M) SBr(m) 1N-I [Cbb(k) Cb,(k)1
m -At SeV(-i2xm kN)

SrB(m) Srr(m) J k- tCvb(k) Cyy(k)e

Ssr(m) - cr(m) i %r(m)

B, =" U, - iV,

B. = .- iY,

It follows that:

1. Both sequences have the individual properties in theorem B:

2. C, (k)= CTb(N-k) are real-valued;

3. S 1r(m) Sr(N -i) = SNr(N -m) are complex-valued;

4. for 0 < m < N/2 and 0 < m' < N/2 with m * m', (Um, Vm) are uncorrelated with
(#M' *m')

5. if0 < m < N'2.

Um S-m(m) 0 cnr(m) qr(m)
Vm 0 Sss( m) -%lrQ m) csr(m) Af

covarance matrix of 0

0, CPr(m) -%r(m) Srr(m) 0 2

Vam %r(m) %r 0 Srr
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if m = 0orm = N/2,

covoanc Ma~ ofU] . [S33 (m) CBr(in)]•,,•iJ•€ • of021 " [r(m) Srr(M)J

SDF(m) Af -E[B~r.]

Proof. Item 1 is obviously true. Because,

Cvb(N-k) = E[y¥bR.Nk] by periodicity

= E[ba-kyfl

= Eý.flY ~kJI by covariance-ctationarity

= CqY(k)

This proves item 2 since the real-value property follows directly from the definition.
Continuing,

N-I

S~r(N-m) = At E Cby(k)exp[+i2%(N-m)kIN]
k-0

N-i
= At E qS(k)exp(-12%mkiN)

k-0

= SBr(m)

N-i
= At E Clb(N-k)exp[+i27cm(N-k)/N]

k-0
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Let j = N-k and use the periodicity Cyb(N). Then,

N-I
S~r(N-m) - At E C,b(j)exp[i2xmj/N]

k-0

- SPB(m)

This proves item 3.
The proof of item 4, 5 and 6 is very parallel to the corresponding proof in Theorem B

of item 5 and 6. Let

e, E[B~r..I

e2 =E[Bmr,.I

and perform the parallel algebra. This gives:

SBP($r Af, ifm=m',m *0, m*N/2

ei) 0o), ffM0M.m
~e2) (

SBr (m) Af if m = m = 0 or m = m = NO2

The proof of item 4 and 5 follows from the same steps used in Theorem B.
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THEOREM D

For 1 - 1, 2, define:

N-I I

baL)" E E AQj')exp(i2 mnI/N)
W-0 j-1

J

Q.) - (. i --

where {(Urj, Vmj), m 0 0,1,2...,N/2; j = 1,2,...,J) are independent random variables with

o -j - 0

=j - ._,.j

S~JIAfA, ifm =0orm =N/2

Va'(Uij) = SmjAf AO/2, if I T. m !ý N/2

Vat(Vmj) = S.m Af Ao/2

Here, b(1 ) is interpreted as being realization of a time series sampled with time increment At,a
and Af is defined as:

Af -- l/(At)

A-li



Then the b~1) are real-valued, and the covariance relations for b,(' b Ufj and vare as
follows:

For ).=1, 2:

N-I J

1.Cov[b?("),b("] Af AO S.jj y p-~n~--)N
,-0 j-i

N - 1 J 
xp2. cv r('), bz) Aes~j Q:,j -. i:xm(n- -n)IN]

ifO0 < m < N/2:

3. Cov[Ui.j b.()] = A.,f AORe[Q~j~exp(i27Imn/N)]

4. Cov[V~j, b.() = Smi AfAOlm[ej~exp(27!mn/N)]

If m= Oorm = N2:

5. Cov[U~j, be)] = 2S~j AfAORe[Q~j~exp(i2nmn/N)]

6. IfO0 < m < N/2:

cov UIJ9 O -cov lvmj, ] -I S.jRe[ej)IAfA0I2

Cov[Vm,,, 0I) = Cov[U.,v,,('] =SmjIm[Q~jI]fAO/2

ii

Var [Umj] VM[Vmj] I SMJ AfAB2
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Cov[Ol."), 11 v) 0

7. Ifm On=0or m = N/2, QZj) must be real-valued and:

COV[U.J01.)] = SmJQiiJ,&fA8

Var [U.j] -M SAf Ae

var[O*"'] = s.J[Q&JlIf,&e

8. IfO0 < mn < N/2:

CO[.1102]= C [V11 S, 1Re[Q~j*2j]Q&flAf /2

J-1

9. If m =Oor m = N/2, Q.() is real-valued and

J

Cov 0") 0 (2) SJ 2()Q Af AD
J-1

Proof. The proof just involves a careful application of the previous theorems.
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